Proudly Serving San Diego Since 1984 with 3 Convenient Locations

Big News!

Dr. Illich, with Palomar Hospital on Diabetes awareness month.

Learn more about the latest BrainHearing™ technology and how it can keep your brain sharp. Call or email our office to find out more to assist with your hearing care needs.

Education is the key to better hearing healthcare

Download our Consumer's Guide to Hearing Aids and make informed decisions on the purchase of your next hearing aid device!

Providing Dependable Hearing Care Since 1984

How Does Hearing Loss Impact the Brain?

Daniela Beckmann, Mirko Feldmann, Olena Shchyglo and Professor Denise Manahan-Vaughan from the Department of Neurophysiology of the Medical Faculty worked together for the study.

When sensory perception fades

The researchers studied the brain of mice that exhibit hereditary hearing loss, similar to age related hearing loss in humans. The scientists analysed the density of neurotransmitter receptors in the brain that are crucial for memory formation. They also researched the extent to which information storage in the brain's most important memory organ, the hippocampus, was affected.

Adaptability of the brain suffers

Memory is enabled by a process called synaptic plasticity. In the hippocampus, synaptic plasticity was chronically impaired by progressive hearing loss. The distribution and density of neurotransmitter receptors in sensory and memory regions of the brain also changed constantly. The stronger the hearing impairment, the poorer were both synaptic plasticity and memory ability.

"Our results provide new insights into the putative cause of the relationship between cognitive decline and age-related hearing loss in humans," said Denise Manahan-Vaughan. "We believe that the constant changes in neurotransmitter receptor expression caused by progressive hearing loss create shifting sands at the level of sensory information processing that prevent the hippocampus from working effectively", she adds.

Funding

The study was funded by the Collaborative Research Center (SFB) 874 of the German Research Foundation. SFB 874 "Integration and Representation of Sensory Processes" has existed at RUB since 2010. The researchers investigate how sensory signals generate neuronal maps, resulting in complex behaviour and memory formation. Daniela Beckmann and Mikro Feldmann have also completed the medical students' program of the SFB 874 and the International Graduate School of Neuroscience.